
1

Graphics

■ Vector graphics.
■ Overview of common functions and

parameters.
■ Graphics in Matlab.

Graphics in Matlab

2

Graphics - Vector Images

§ Image composed and stored as a sequence
of pre-set shapes or objects.

§ Lines, rectangles, ellipses, text etc.
§ Described in terms of size, position, drawing

colour, fill colour.
§ Each object’s characteristics can be edited

independently while in this graphical form.

Graphics – Vector Images

§ Often called vector graphics.
§ Common drawing packages allow the

creation of this form of image.
§ Compactly storable in files. PDF
§ We will look at typical commands and file

editing.

3

Graphics – Vector Images
§ Example of a graphic vector image created

using “Autoshapes”.

§ Other popular vector graphic tools are Paint
shop pro, Adobe Fireworks, Photoshop.

I am vector!

Vector Graphics

■ Is to pictures what MIDI is to sound.
■ Uses lines, predefined shapes, curves

and (predefined text).
■ Can be very compact.
■ Good for plotters.
■ Converted to bitmap for monitor display.

4

Vector monitor?

• Used for computer graphics up through the 1970s. It is a type of CRT,
similar to the oscilloscope. In a vector display, the image is composed of
drawn lines rather than a grid of glowing pixels as in raster graphics.

• Vector displays do not suffer from the display artifacts
of aliasing and pixelation

Matlab graphics
Co-ordinate systems

■ Vector graphics based upon an x, y co-
ordinate system.
■ The x co-ordinate runs from left to right

across the screen.
■ The y co-ordinate usually runs from the

bottom (= 0) of the image to the top, but
sometimes from top (= 0) to the bottom.

set(gca,'XAxisLocation','top’) %gca is the current axis handle

5

Co-ordinate systems
■ To set up co-ordinate system in Matlab.
■ Haxes = axes
– Sets up a co-ordinate system starting at 0 on the x- and y-axes

and extending to 1.0 on the x-axis and 1.0 on the y-axis.

■ You may now draw on this system.
■ You can change the axis

scaling using the “axis”
command.

■ But by default the scaling
will increase to accommodate
your objects.

try: Haxes=axes('Plotboxaspectratio',[1 1 1]);

Lines in Matlab
■ Function line used to draw lines
■ h = line(x, y) where x and y are x and y co-ordinates of

the start and end of a line. h is a “handle” to the graphics
object (used for setting properties).

■ Example
– x=[20 50]
– y=[30 80]
– hline = line(x,y)
Draws a line from point x=20,

y=30 to the point x=50, y=80

Also try: hline=line(x,y,z);

6

Rectangles
in Matlab
■ Function “rectangle”

used to draw rectangles
in Matlab.

■ Often rectangles are
defined by 2 points only

– Bottom left and top right.

■ In Matlab
– hrect = rectangle('Position', [100 100 50 25])
Ø (start position (x,y) then width and height.)

■ Also used to draw ellipses and circles
– hcirc = rectangle('Position', [100 100 50 25], 'Curvature', [1 1]).
Ø A circle is an ellipse (with the same height as its width)

Polygons
in Matlab

■ h = patch(x, y, ‘r’) draws a
polygon, the vertices of
which are contained in x
and y, and is filled by
colour ‘r’.

■ Example draw a red filled
pentagon.

– Need 5 points in x and y.
– x=[50 60 80 85 60]
– y=[60 70 60 50 40]
– hpoly = patch(x, y, ‘r’)

Long Name Short Name RGB Triplet

'yellow' 'y' [1 1 0]

'magenta' 'm' [1 0 1]

'cyan' 'c' [0 1 1]

'red' 'r' [1 0 0]

'green' 'g' [0 1 0]

'blue' 'b' [0 0 1]

'white' 'w' [1 1 1]

'black' 'k' [0 0 0]

7

Our example so far

Exercises

■ Draw a line from point x=20, y=30 to the
point x=50, y=60.

■ Draw a rectangle with the bottom left hand
corner at point x=30, y=50 and the top right
hand corner at point x=70, y=80.

■ Draw a circle of radius 3 and centred at
point x=50, y=60.

■ Draw a blue filled triangle.

8

Handles

■ The main figure has a “handle” in the Matlab
environment.

■ Handles allow Matlab to keep track of figures
and graphic objects.

■ Within the main figure we have an axis object;
this also has a handle.

■ It is a “child” object of the figure.

Handles
■ We differentiate between or identify objects

by their handles
■ Sort of pointer.
■ When we add drawing objects such as our

lines, rectangles, patches, they become
child objects of the axis object and are also
identified by handles.

■ So we now have an “axes” with four
children.

■ We can return there values using
■ Hchild=get(haxes, ‘Children’)

9

Handles
■ So our structure so far could be drawn as.

Hfigure is the handle to the
figure and has child object with handle
haxes

haxes has
4 children with handles
hrect,
hcirc,
hline
hpoly

Handles
■ Or in hierarchical form

Figure
‘children’

‘children’
Axes

line rect patchrect

Represents
handles

hfigure

10

Handles

■ The handle of the figure is returned in
variable “hfigure”. (hfigure=figure(1))

■ It gives us access to all the properties of the
figure.

– get(h) returns a copy of the figure’s
(object’s) properties including its children.

Handles, Try it

■ Type “maindetails=get(hfigure)”
■ main details lists all the properties in the

figure.
■ The structure includes handles to the child

objects.
■ We can use the handles to gain access to

the child objects and alter their properties.

11

Properties, get() and set()

■ We can retrieve a copy of the values
associated with a graphic object through its
handle by using S=get(hrect)

■ The structure contains all the properties of the
graphic object.

■ However, since it is a copy we cannot change
the actual information associated with the
graphic object.

Properties, get() and set()

■ So in true “OO’” style we must use an
access method/function to adjust
parameters..

■ Set(h,'PropertyName',PropertyValue)
■ Get(h) or Get(h, ‘PropertyName’) returns

the property.
■ Note ‘quotes’

12

>> s=get(hline)

Annotation: [1x1 hg.Annotation]
BeingDeleted: 'off'
BusyAction: 'queue'

ButtonDownFcn: ''
Children: [0x1 double]
Clipping: 'on'

Color: [0 0 1]
CreateFcn: ''
DeleteFcn: ''

DisplayName: ''
HandleVisibility: 'on'

HitTest: 'on'
Interruptible: 'on'

LineStyle: '-'
LineWidth: 0.5000

Marker: 'none'
MarkerEdgeColor: 'auto'
MarkerFaceColor: 'none'

MarkerSize: 6
Parent: 0.0094

Selected: 'off'
SelectionHighlight: 'on'

Tag: ''
Type: 'line'

UIContextMenu: []
UserData: []
Visible: 'on'

XData: [20 50]
YData: [30 80]
ZData: [1x0 double]

>> s=get(hcirc)

Annotation: [1x1 hg.Annotation]
BeingDeleted: 'off'
BusyAction: 'queue'

ButtonDownFcn: ''
Children: [0x1 double]
Clipping: 'on'

CreateFcn: ''
Curvature: [1 1]
DeleteFcn: ''

DisplayName: ''
EdgeColor: [0 0 0]
FaceColor: 'none'

HandleVisibility: 'on'
HitTest: 'on'

Interruptible: 'on'
LineStyle: '-'
LineWidth: 0.5000

Parent: 0.0094
Position: [100 100 50 25]
Selected: 'off'

SelectionHighlight: 'on'
Tag: ''

Type: 'rectangle'
UIContextMenu: []

UserData: []
Visible: 'on'

>> s=get(hpoly)

AlphaDataMapping: 'scaled'
AmbientStrength: 0.3000

Annotation: [1x1 hg.Annotation]
BackFaceLighting: 'reverselit'

BeingDeleted: 'off'
BusyAction: 'queue'

ButtonDownFcn: ''
CData: []

CDataMapping: 'scaled'
Children: [0x1 double]
Clipping: 'on'
CreateFcn: ''
DeleteFcn: ''

DiffuseStrength: 0.6000
DisplayName: ''
EdgeAlpha: 1
EdgeColor: [0 0 0]

EdgeLighting: 'none'
FaceAlpha: 1
FaceColor: [1 0 0]

FaceLighting: 'flat'
Faces: [1 2 3 4 5]

FaceVertexAlphaData: []
FaceVertexCData: []
HandleVisibility: 'on'

HitTest: 'on'
Interruptible: 'on'

LineStyle: '-'
LineWidth: 0.5000

Marker: 'none'

Order of objects

■ As an drawing object is added to the axes
object an entry (drawing object’s handle) is
placed in the “Children” array of the axis
object.

■ We can rearrange this array to change
which object is on top.

■ Again we are simply swapping handles
■ We need to call “refresh” to see it.

13

Order of objects
■ So we get the axes objects “children” array.
■ hchild=get(haxes, ‘children’)
■ Make a copy
– htemp=hchild

■ Rearrange the handles to the objects
– htemp(4)=hchild(1)
– htemp(1)=hchild(4)
And set the axes “children: array to our new values
set(haxes,’children’, htemp)

■ or use uistack(): uistack(hpoly,'top');

Deleting objects.

■ We can delete an object using its handle.
■ delete(hpoly)
■ Better put it back!
■ hpoly = patch(x, y, ‘r’)

14

Stroke, Fill and Colour

■ All vector graphic shapes have stroke and
fill “properties”.

■ They affect how the graphic is drawn.
■ Stroke is how lines (and outlines are drawn)

fill is how shapes are filled in.
■ One property is “colour” (‘color’ in Matlab.
■ Some other properties for stroke are:
– Width ‘LineWidth’
– style (dotted dashed etc.) ‘LineStyle’

Stroke, Fill and Colour

■ To alter the fill and edge colour of a shape in
Matlab:

– set(hrect, 'FaceColor', [1 0 0]) for fill colour
– set(hrect, 'EdgeColor', [1 0 0.5]) for stroke

colour.
– Where hrect is a handle to the shape.
■ Line width and style may also be applied to the

shape’s outline.

15

Transparency and “alpha”
channels.

■ Another property of vector graphics is the
ability to add transparency.
■ Many packages allow the adjustment of

transparency from 0% to 100%.
■ An “alpha channel” (in addition to the colour

channels) is provided with the objects for
this purpose.

Transparency and “alpha” channels.

■ We can access the alpha channel of our shapes
by the alpha property of the “patch” drawing
object in Matlab.

■ Face and edge (fill and stroke) have separate
alpha channels.

■ It has values between 0 and 1.
■ An alpha value of 0 means completely

transparent (i.e., invisible); an alpha value of 1
means completely opaque (i.e., no
transparency).

■ set(hpoly, ‘FaceAlpha’, 0.5)

16

Text

■ Text may be added to vector graphics.
■ htext=text(50,100, ‘Dogs and cats’)
■ Properties “font” and “colour” (at least) may

be changed.

Our example so far (1)

17

Our example so far (2)

Exercises

■ Draw the rectangle as above but change the
outline to red and fill the rectangle with cyan.

18

Curves
■ Described mathematically.
■ Polynomial equations.
■ Degree of equations is the highest power of x.
■ Linear y = ax + b
– degree 1
■ Quadratic. y = ax2 + bx + c.
– degree 2
■ Cubic. y = ax3 + bx2 + cx + d
– degree 3

Exercises
■ Linear degree 1
e.g. y = 2x + 5.

x = [-10 :10]; plot(x, 2*x + 5)

■ Quadratic degree 2
e.g. y = x2 + 0x + 5.

x = [-10 : 10]; plot(x, (x.^2) + 5)

■ Cubic degree 3
e.g. y = 2x3 + 20x2 + 3x +2 .

x = [-10 : 10]; plot(x, 2*(x.^3) + 20*(x.^2) + 3*x + 2)

19

Bézier curve

■ Pierre Bézier first used them in the 1960’s to help designing
Renault cars…

■ https://en.wikipedia.org/wiki/B%C3%A9zier_curve

■ http://blogs.sitepointstatic.com/examples/tech/svg-curves/quadratic-curve.html

■ A Bézier curve is a parametric curve frequently used
in computer graphics to model smooth curves that can be scaled
indefinitely.

Bézier curve

http://www.mathworks.com/matlabcentral/fileexchange/33828-generalised-
bezier-curve-matlab-code

20

Bézier curve

http://guity-novin.blogspot.co.uk/2013/04/chapter-66-bezier-curves-for-digital.html

https://upload.wikimedia.
org/wikipedia/commons/
e/e1/HINO-4CV-01.jpg

Other mathematical curves
■ B-splines
■ NURBS (Non-uniform rational basis

spline)

http://m2matlabdb.ma.tum.de/example.j pg?MP_ID=485

