
1

Graphics Manipulation

Graphics Manipulation

■ The manipulation of graphical shape (vector
images).

■ We will consider scaling, translation and
rotation.

■ Can be applied to bitmaps.

2

Graphic Manipulation

■ Manipulation achieved as a series of
transformations.

■ These transformation achieved by matrices.
■ Called transformation matrices.
■ Complex manipulation is achieved by

combination (multiplication) of the basic
transformation matrices.

■ We will see that the order of multiplication is
important.

Manipulating a picture using affine transformation

■ In bitmaps we manipulate each pixel in the image.

■ Affine transformation is a linear mapping method that
preserves points, straight lines, and planes. Sets of parallel
lines remain parallel after an affine transformation.

■ There are three basic operations:
– Translation
– Scaling
– Rotation
– Shear

3

The equations of manipulation

■ Translation

■ Scaling.

■ Rotation.

Matrix multiplication

■ Multiply each element of a row of the first matrix by
each element of the corresponding column of the
second matrix.

■ Add the products together.
■ Put the result in position (row of first matrix, column of

second matrix) of a new matrix.
■ Repeat for all rows of the first matrix.
■ Means that the number of rows of the first matrix

must be the same as the number of columns of the
second matrix.

■ Easy for computers.

4

Matrix multiplication

§ Example:

§ Try it with Matlab.
A=[5 8 ; 7 2]
B=[6 1 ; 4 3]
A*B
Try B*A
Not the same.

§ Watch this video if you don’t get it now.
https://www.youtube.com/watch?v=kuixY2bCc_0

The equations in a matrix form.
■ Scaling as an example:

■ But…

5

Homogeneous Coordinates

“Subsequent” operations are inserted here, by pre-multiplying

The equations in a
“homogeneous” matrix form.

■ Translation

■ Scaling

■ Rotation

6

Scaling & transforming in Graphics system
xy=[50 60 80 85 60; 60 70 60 50 40; 1 1 1 1 1];
x=xy(1,1:5);
y=xy(2,1:5);
patch(x, y, 'r');
%translate the shape
RT=[1 0 30; 0 1 30; 0 0 1];

xyp=RT*xy;
x=xyp(1,1:5);
y=xyp(2,1:5);

patch(x, y, 'b');

%Scale up the shape
RT=[2 0 0; 0 2 0; 0 0 1];

xyp=RT*xy;
x=xyp(1,1:5);
y=xyp(2,1:5);

patch(x, y, 'g');

%Scale down the shape
RT=[0.5 0 0; 0 0.5 0; 0 0 1];

xyp=RT*xy;
x=xyp(1,1:5);
y=xyp(2,1:5);

patch(x, y, 'g');

Rotating in Graphics system
xy=[0 60 80 85;

0 70 60 50;
1 1 1 1];

x=xy(1,1:4);
y=xy(2,1:4);
patch(x, y, 'r');

% produce rotated object
for th=10:10:300

% Rotation clockwise
RT=[cosd(th) -sind(th) 0;

sind(th) cosd(th) 0;
0 0 1];

xyp=RT*xy;
x=xyp(1,1:4);
y=xyp(2,1:4);
patch(x, y, 'b');

end

% To rotation anti-clockwise use
this instead

% RT=[cosd(th) sind(th);
% -sind(th) cosd(th)];

In rotation we should
consider:

1. Point of rotation
2. Direction of rotation
3. Degree of rotation

-100 -50 0 50 100
-100

-80

-60

-40

-20

0

20

40

60

80

100

7

Matlab rotate metrices

Exercises in translation, scaling and rotation

Now create your own transformation matrices for the following:

■ Translation
– Move a shape 20 pixels up and 30 pixels across

■ Scaling
– Scale a shape to a tenth of its height and a third of its width.

■ Rotation
– Rotate a shape by 45o clockwise.

8

Compound Transformations

■ For example:
Scaling followed by rotation.

By multiplying different types of transformation matrix, we can do
two (or more) transformations at once. Effectively this transforms
the already transformed image.

Compound Transformations

■ For example:
Scaling followed by translation.

9

Order of transformation matrices

■ Note that Scaling followed by translation is not the same as
translation followed by scaling, because we scale the
translation in the second case.

■ Rotation followed by scaling distorts the transformation
matrix and results in “skew”.

Order of transformation matrices

■ This is true of all compound transformations, so the order is
important.

■ Also, because the transformation matrix is mult iplied by the
object to be transformed, rather than the other way around,
“later” operations are on the left of any expression. This may
look like the wrong way round.

10

Exercises in compound
transformations.

■ Produce a matrix which produces a two times increase in
height, halves the width, and rotates the original shape.

■ Repeat the above, but move the shape 40 pixels down and 100
pixels across also.

■ Now reverse the order of the transformations and observe the
effect.

■ Try your own.

How to manipulate images using
matrix transformation (rotation)

(x,y)

(x’,y’)

forward mapping

11

input_matrix =
rgb2gray(imread('download1.bmp'));
[rows, cols] = size(input_matrix);

% rotation
degree = 15;
radians = (pi * degree) / 180;
theta = radians;

% output matrix
t_matrix = uint8(zeros(rows,cols));

% transformation matrix
T = [cos(theta) -sin(theta) 0; sin(theta)
cos(theta) 1; 0 0 1];

% loop over each input_matrix coordinate
for n = 1:numel(input_matrix)

% current coordinate
[x, y] = ind2sub([rows cols], n);
v = [x;y;1];
v = T*v;
% only integer values
a = floor(v(1));
b = floor(v(2));
if a > 0 && b > 0

% replace in t_matrix
t_matrix(a,b) = input_matrix(x,y);

end
end

Note the speckled black pixels dotted all
over. This is because some of the destination
pixels (which are within the image bounds)
were unassigned.
Note also that the even form patterns. This is
due to the sine and cosine functions, and the
regularity of pixel width and height. Sine and
cosine are periodic functions. Since pixel
indices are regular, therefore sine and cosine
results are regular too. Hence, calculations
regularly fail to assign pixel values.

1 2 3

Source

Destination

x

2.513

12

Use invert transformation matrix to back trace the source pixel.

...
% inverse transformation matrix
IVT=inv(T);
v = IVT*v;
a = floor(v(1));
b = floor(v(2));
if rows>a && a > 0 && cols>b && b > 0
% replace in t_matrix

t_matrix2(x,y) = input_matrix(a,b);
end

end
...

Reverse mapping

Compare the quality with the source-to-destination
part. No missing pixels. It's still sort of grainy
though. This is because some of the destination
pixels get their values from the same source pixel,
so there might be 2 side-by-side destination pixels
with the same colour. This gives mini blocks of
identical colour in the result, which on the whole,
gives an unpolished look.

1 2 3 Source

Destination

x

1.206

13

1 2 3 Source

Destination

x

What would we find between at a position
between pixel #1 and #2?

1.206

Linear and Bilinear interpolation

?

Interpolation is a method of estimating a value from a
set of given values.

14

Linear and Bilinear interpolation

“Bilinear” means there are 2 directions to interpolate.
In our case, we’re interpolating between 4 pixels.
Visualise each pixel as a single point. Linearly
interpolate between the top 2 pixels. Linearly
interpolate between the bottom 2 pixels. Then
linearly interpolate between the calculated results of
the previous two. You can expand on this concept to
get trilinear interpolation.

http://polymathprogr am mer.c om/ 2008/ 09/ 29/l inear-and-c ubic-inter polation/

for n = 1:numel(t_matrix)

% current coordinate
[x, y] = ind2sub([rows cols], n);

v = [x;y;1];
v = IVT*v;

a=v(1);
b=v(2);

a1 = floor(a);
a2 = ceil(a);
b1 = floor(b);
b2 = ceil(b);

if rows>a2 && a1 > 0 && cols>b2 && b1 > 0

z11=double(input_matrix(a1,b1));
z12=double(input_matrix(a1,b2));
z21=double(input_matrix(a2,b1));
z22=double(input_matrix(a2,b2));

z1=z11+(b-b1)*(z12-z11)/(b2-b1);
z2=z21+(b-b1)*(z22-z21)/(b2-b1);
z=z1+(z2-z1)*(a-a1)/(a2-a1);

t_matrix3(x,y) = uint8(z);

end
end

z11 (a1,b1) z12 (a1,b2)

z21 (a2,b1) z22 (a2,b2)

z1 (a1,b)

z2 (a2,b)

z (a,b)

15

1 2 3 Source

Destination

Smooth image rotation using bilinear
interpolation

Example codes in NILE for exercise
% input image
input_matrix = rgb2gray(imread('download1.bmp'));

[rows, cols] = size(input_matrix);

% rotation

degree = 15;
radians = (pi * degree) / 180;
theta = radians;

% output matrix
t_matrix = uint8(zeros(rows,cols));

t_matrix2 = uint8(zeros(rows,cols));
t_matrix3 = uint8(zeros(rows,cols));

% transformation matrix
T = [cos(theta) -sin(theta) 0; sin(theta) cos(theta) 1; 0 0 1];

% inverse transformation matrix
IVT=inv(T);

% loop over each input_matrix coordinate

for n = 1:numel(input_matrix)
% current coordinate
[x, y] = ind2sub([rows cols], n);

v = [x;y;1];

% homogeneous coordinate

v = T*v;

% only integer values

a = floor(v(1));
b = floor(v(2));

if a > 0 && b > 0
% replace in t_matrix
t_matrix(a,b) = input_matrix(x,y);

end
end

for n = 1:numel(t_matrix)

% current coordinate
[x, y] = ind2sub([rows cols], n);

% transpose
v = [x;y;1];

% homogeneous coordinate
v = IVT*v;

% only integer values
a = floor(v(1));

b = floor(v(2));

if rows>a && a > 0 && cols>b && b > 0

% replace in t_matrix
t_matrix2(x,y) = input_matrix(a,b);

end

end

for n = 1:numel(t_matrix)

% current coordinate
[x, y] = ind2sub([rows cols], n);

% transpose
v = [x;y;1];

% homogeneous coordinate

v = IVT*v;
a=v(1);
b=v(2);

a1 = floor(a);
a2 = ceil(a);

b1 = floor(b);
b2 = ceil(b);

if rows>a2 && a1 > 0 && cols>b2 && b1 > 0

z11=double(input_matrix(a1,b1));

z12=double(input_matrix(a1,b2));
z21=double(input_matrix(a2,b1));
z22=double(input_matrix(a2,b2));

z1=z11+(b-b1)*(z12-z11)/(b2-b1);
z2=z21+(b-b1)*(z22-z21)/(b2-b1);
z=z1+(z2-z1)*(a-a1)/(a2-a1);

t_matrix3(x,y) = uint8(z);

end
end

figure(1); imshow(input_matrix); % original image
figure(2); imshow(t_matrix);
figure(3); imshow(t_matrix2);

figure(4); imshow(t_matrix3);

