Graphics Manipulation

Graphics Manipulation

m The manipulation of graphical shape (vector
images).

m We will consider scaling, translation and
rotation.

m Can be applied to bitmaps.

Graphic Manipulation

m Manipulation achieved as a series of
transformations.

m These transformation achieved by matrices.
m Called transformation matrices.

m Complex manipulation is achieved by
combination (multiplication) of the basic
transformation matrices.

m We will see that the order of multiplication is
important.

Manipulating a picture using affine transformation

m In bitmaps we manipulate each pixel in the image.

m Affine transformation is a linear mapping method that
preserves points, straight lines, and planes. Sets of parallel
lines remain parallel after an affine transformation.

m There are three basic operations:
- Translation @

- Scaling H]
- Rotation
- Shear 7T

A==~

The equations of manipulation

m Translation »L = 2+ T,
y = y+ 1,
. r
m Scaling. o= T X5
"= y x Sy
m Rotation. ' = xcosf — ysinf
Y = zsinf + ycosb

Matrix multiplication

m Multiply each element of a row of the first matrix by
each element of the corresponding column of the
second matrix.

m Add the products together.

m Put the result in position (row of first matrix, column of
second matrix) of a new matrix.

m Repeat for all rows of the first matrix.

m Means that the number of rows of the first matrix
must be the same as the number of columns of the
second matrix.

m Easy for computers.

Matrix multiplication

= Example:)
5 8 6 1

= Try it with Matlab.)
(5x6)+(8x4) (5x1)+(8x3)

A=[68;7 2] T (7x6)+(2x4) (Tx1)+(2x3)
B=[61;43] »

A*B 62 29

Try B*A ~ |50 13

Not the same.

» Watch this video if you don’t get it now.

https://www.youtube.com/watch?v=kuixY2bCc_0

The equations in a matrix form.

m Scaling as an example:

m But...

x=ax+by+t, — X' a b\x t,
i = GHCH

Homogeneous Coordinates

X a b t \x
y|=|lc d t |y
1 0 0 1.1

“Subsequent” operations are inserted here, by pre-multiplying

x 1 0 ¢, Ya b O0)x
y =10 1 t,lc d 0fy
1 0 0 TXO O 1)1

The equationsin a
“homogeneous” matrix form.

m [ranslation

' 1 0 T, [z

vy = 017, x|y

1 00 1 1

m Scaling z S, 0 0 [x
Y = 0 S, 0| x|y

1 0 0 1 1

m Rotation a cosf) —sinf 0 T
Yy = sinff cosf 0| x|y
1

0 0 1

Scaling & transforming in Graphics system

xy=[50 60 80 85 60; 60 70 60 50 40; 1 1 11 1J;

x=xy(1,1:5);

y=xy(2,1:5);

patch(x, v, 'r');

%translate the shape

RT=[1030; 0 1 30; 0 0 1];
xyp=RT*xy;
x=xyp(1,1:5);
y=xyp(2,1:5);

patch(x, v, 'b'");

%Scale up the shape

RT=[200;020; 00 1];
xyp=RT*xy;
x=xyp(1,1:5);
y=xyp(2,1:5);

patch(x, y, 'g');

%Scale down the shape

RT=[0.500; 005 0; 00 1];
xyp=RT*xy;
x=xyp(1,1:5);
y=xyp(2,1:5);

patch(x, y, 'd');

140

120+

100 -

80

60

40+

20 40 60 80 100 120 140 160 180

Rotating in Graphics system

xy=[0 60 80 85;
070 60 50;
1111]

x=xy(1,1:4);

y=xy(2,1:4);

patch(x, y, 'r');

% produce rotated object
for th=10:10:300
% Rotation clockwise
RT=[cosd(th) -sind(th) O;
sind(th) cosd(th) 0;
001
xyp=RT*xy;
x=xyp(1,1:4);
y=xyp(2,1:4);
patch(x, v, 'b'");
end

% To rotation anti-clockwise use

this instead

% RT=[cosd(th) sind(th);
% -sind(th) cosd(th)];

In rotation we should
consider:

1. Point of rotation
2. Direction of rotation
3. Degree of rotation

Matlab rotate metrices

Command Window Command Window

>> rotx(30) >> roty(30)

ans = ans =

1.0000 0 0 0.8660 0 0.5000
0 0.8660 -0.5000 0 1.0000 0
0 0.5000 0.8660 -0.5000 0 0.8660
Command Window
>> rotz(30)
ans =
0.8660 -0.5000 0
0.5000 0.8660 0
0 0 1.0000

Exercises in translation, scaling and rotation

Now create your own transformation matrices for the following:

m Translation
- Move a shape 20 pixels up and 30 pixels across

m Scaling
- Scale a shape to a tenth of its height and a third of its width.

m Rotation
- Rotate a shape by 45° clockwise.

Compound Transformations

By multiplying different types of transformation matrix, we can do
two (or more) transformations at once. Effectively this transforms

the already transformed image.

m Forexample: 05000 0 0
g g scale = 0 0.2500 0
Scaling followed by rotation. 0 01
0.7070 —0.7070 0
rotate = 0.7070 0.7070 0
0 0 1

compound = rotale x scale

0 0 1 0 0 1

0.3535 —0.1767 0
= 0.3535 0.1767 0

0.7070 —0.7070 0O 0.5000 0 0
= 0.7070 0.7070 0 X 0 0.2500 0

0 0 1

Compound Transformations

m Forexample:
Scaling followed by translation. 4..;. — [0 800 0.9:

wt

SR
=
oo

0) 1
10 20
translate = 0 1 50
0 0 1
compound = translate x scale
1 0 20 0.5000 0 0
= 0 1 50| x 0 0.2500 0
00 1 0 0 1

0 0.2500
0 0

[0.5000 0

20
50
1

Order of transformation matrices

m Note that Scaling followed by translation is not the same as
translation followed by scaling, because we scale the
translation in the second case.

m Rotation followed by scaling distorts the transformation
matrix and results in “skew”.

Order of transformation matrices

m This is true of all compound transformations, so the order is
important.

m Also, because the transformation matrix is multiplied by the
object to be transformed, rather than the other way around,
“later” operations are on the left of any expression. This may
look like the wrong way round.

Exercises in compound
transformations.

m Produce a matrix which produces a two times increase in
height, halves the width, and rotates the original shape.

m Repeat the above, but move the shape 40 pixels down and 100
pixels across also.

m Now reverse the order of the transformations and observe the
effect.

m Tryyourown.

How to manipulate images using
matrix transformation (rotation)

forward mapping

Assigning values to destination
v (X))

a cos —sind 0 T
y | = | sinf cosf 0| x|y
1 0 0 1 1

10

input_matrix =
rgb2gray(imread('downloadl.bmp'));
[rows, cols] = size(input matrix);

degree = 15;
radians = (pi * degree) / 180;
theta = radians;

% output matrix
t matrix = uint8(zeros(rows,cols)) ;

% transformation matrix
T = [cos(theta) -sin(theta) 0; sin(theta)
cos(theta) 1; 00 1];

% loop over each input matrix coordinate

for n = l:numel(input matrix)
% current coordinate
[x, y] = ind2sub([rows cols], n);
v = [x;¥i;1];

v = T*v;
% only integer values
a = floor(v(l));
b = floor(v(2));
if a > 0 & b > 0
% replace in t matrix
t matrix(a,b) = input_matrix(x,y);
end
end

$ rotation \ b /

Assigning values to destination

a cosf Asing 0 x
Y = sing/' cosf 0| x|y
1 0 1 1

Note the speckled black pixels dotted all
over. This is because some of the destination
pixels (which are within the image bounds)
were unassigned.

Note also that the even form patterns. This is
due to the sine and cosine functions, and the
regularity of pixel width and height. Sine and
cosine are periodic functions. Since pixel
indices are regular, therefore sine and cosine
results are regular too. Hence, calculations
regularly fail to assign pixel values.

Source
A\

Destination

11

Reverse mapping

Getting values from source

Use invert transformation matrix to back trace the source pixel.

% inverse transformation matrix
IVT=inv(T);

v = IVT*v;
a = floor(v(1l));
b = floor(v(2));

if rows>a && a > 0 && cols>b && b > 0
% replace in t matrix
t_matrixzfx,y) = input matrix(a,b) ;
end
end

= Compare the quality with the source-to-destination
9 Source part. No missing pixels. It's still sort of grainy

though. This is because some of the destination
pixels get their values from the same source pixel,
so there might be 2 side-by-side destination pixels

with the same colour. This gives mini blocks of
Destination identical colour inthe result, which on the whole,

gives an unpolished look.

12

What would we find between at a position
between pixel #1 and #27?

1.206
W 2 3 | Source
X
\ Destination

Linear and Bilinear interpolation

Interpolation is a method of estimating a value from a
set of given values.

13

Linear and Bilinear interpolation

Stage 1 (original values)
Stage 2 horizontal interpolation
Stage 3 vertical interpolation (final)

“Bilinear” means there are 2 directions to intempolate.
In our case, we're interpolating between 4 pixels.
Visualise each pixel as a singlke point. Linearly
intepolate between the top 2 pixels. Linearly
intepolate between the bottom 2 pixels. Then
linearly intempolate between the calculated results of
the previous two. You can expand on this concept to
get trilinearinterpolation.

Total LERPs= 4 + 2 + 1
=7

http://polymathprogr am mer.c om/ 20 08/ 09/ 29/1in e ar-a n d-c ubi c-inter p ol ation/

for n = l:numel(t_matrix)

% current coordinate

[x, Y] = ind2sub([rows cols], n);

v = [x;y;ll;

v = IVT*v; z11 (a1,b1) z1 (al,b) z12 (a1,b2)
°. °

a=v(l);
b=v(2);

al
a2
bl
b2

floor(a);
ceil(a);
floor(b);
ceil(b);

¢ z(ab)
if rows>a2 && al > 0 && cols>b2 && bl > 0

zll=double(input_matrix(al,bl)); [o

zl2=double(input_matrix(al,b2)); z21 (a2,b1) 22 (a2,b) 222 (a2,b2)

z21=double(input_matrix(a2,bl)); .
z22=double(input_matrix(a2,b2)); Stage 1 (Orlglnal VaerS)

Stage 2 horizontal interpolation
Stage 3 vertical interpolation (final)

z1=z11+(b-bl)*(z12-2z11)/(b2-bl);
22=221+(b-bl)*(2z22-221)/(b2-bl);
z=z1+(z2-z1)*(a-al)/(a2-al);

t_matrix3(x,y) = uint8(z);

end

14

Smooth image rotation using bilinear

iInterpolation

Source

Destination

Example codes in NILE for exercise

% input image
input_matrix

rgb2gray (imread (' downloadl.bmp')) ;
= size(input matrix);

[rows, cols]

% rotation

degree = 15;
radians = (pi * degree) / 180;
theta = radians;

% output matrix

tmatrix = uint8(zeros(rows,cols));
tmatrix2 = uint8(zeros (rows,cols));
tmatrix3 = uint8(zeros (rows,cols)) ;

% transformation matrix

T = [cos(theta) -sin(theta) 0; sin(theta) cos(theta)
% inverse transformation matrix
IVI=inv(T);

% loop over each input matrix coordinate
for n = l:numel (input_matrix)
% current coordinate
[x, y] = ind2sub([rows cols], n);
v = [xyill;

% homogeneous coordinate
v = T

% only integer values
a = floor(v(l));
b = floor(v(2));

if a>0 & b>0
% replace in t matrix
t matrix(a,b) input matrix(x,y);

end
end

for n = l:mumel (t_matrix)
% current coordinate
[x, y] = ind2sub([rows cols], n);

% transpose
v = [xyill;

iy

0 0 1);

homogeneous coordinate
v = IVTR;
% only integer values

3

= floor(v(1));
b = floor(v(2));

if rows>a & a > 0 & colsb & b > 0

% replace in t matrix
tmatrix2 (x,y) input matrix(a,b);

end
end

for n = l:mumel (t_matrix)
% current coordinate
[x, yl = ind2sub([rows cols], n);

% transpose
= [xyill;

<

% homogeneous coordinate

v = IVTh;
a=v(1);

b=v(2);

al = floor(a) ;
a2 = ceil(a);
bl = floor(b) ;
b2 = ceil(b);

if rows>a2 & al > 0 & cols>b2 & bl > 0

zll=doub le (input_matrix(al,bl));
zl2=dowb le (input_matrix(al,b2));
z21=doub le (input_matrix(a2,bl));
z22=doub le (input_matrix(a2,b2));

zl=z11+(b-b1) * (z12-2z11) /(b2-b1) ;
22=221+(b-b1) * (222-221) /(b2-b1) ;
z=zl+(z2-z1)* (a-al) / (a2-al);

t matrix3(x,y) = uint8(z);
end
end
figure(1); imshow(input_matrix); % original image
figure(2); imshow(t_matrix);
figure(3); imshow(t_matrix2);
figure(4); imshow(t _matrix3);

15

